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ABSTRACT

In convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic

variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and down-

drafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations.

However, the flux partition is challenging, especially in regions without convective cloud. Amethod to decompose

the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based

method partitions the full JPD into a jointGaussian part and the complement, which represent the localmixing and

the large-scale coherentmotions, respectively. The coherent part can be further divided into updraft and downdraft

parts based on the sign of vertical velocity. The flowdecomposition is independent of water condensate (cloud) and

can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. Themethod is applied to

large-eddy simulation model data of three boundary layers. The results are compared with traditional cloud and

cloud-core decompositions and a decaying scalar conditional sampling method. The JPD-based method includes a

single free parameter and sensitivity tests showweak dependence on the parameter values. The results of the JPD-

based method are somewhat similar to the cloud-core and conditional sampling methods. However, differences in

the relative magnitude of the flux decomposition terms suggest that an objective definition of the flow regions is

subtle and diagnosed flow properties like updraft characteristics depend on the sampling method. Moreover, the

flux decomposition depends on the thermodynamic variable and convection characteristics.

1. Introduction

In weather and climate models the time evolution of

scalar variables depends on the turbulent flux divergence

and the combination of advective tendencies and diabatic

processes, that is,
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where f is an ensemble-averaged scalar variable and

u0
jf

0 its turbulent fluxes. Primes denote fluctuations with

respect to the ensemble mean f:

f5f1f0. (2)

For model grid resolutions much larger than the

characteristic flow scales, the horizontal gradients of the

turbulent fluxes are negligible and the dominant turbu-

lent transport contribution is due to the vertical gradi-

ents of w0f0. In convective conditions the propensity of

turbulence to organize into large-scale coherentmotions

can be modeled by partitioning the vertical turbulent

flux into contributions from local turbulent mixing and

coherent motions (Chatfield and Brost 1987; Randall

et al. 1992; Siebesma and Cuijpers 1995; Hourdin et al.

2002; Soares et al. 2004; Siebesma et al. 2007; Rio and

Hourdin 2008; Pergaud et al. 2009; Angevine et al. 2010;

Suselj et al. 2013):
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where the first term on the right-hand side (rhs) repre-

sents the local mixing parameterized by the eddy-

diffusivity assumption using a scalar coefficient K and

the second term represents the ascending motions that

can have sufficient kinetic energy to rise counter to the

mean buoyancy gradient near the top of the boundary

layer. Even though (3) is well defined and physically

justified, partitioning the fluid motions into local and

coherent-motion transport and mixing is challenging

because of the random multiscale character of turbu-

lence. Figure 1a shows an example of coherent struc-

tures in a dry convective boundary layer. Thermals are

composed of eddies of various sizes, thus their sampling

is challenging.

The decomposition into local and coherent motion

contributions can be easily computed in the cloud layer

of shallow cumulus convection (Siebesma and Cuijpers

1995) where the cloud, or a cloud subset such as the

cloud core, can define the updraft. However, such de-

compositions cannot be performed in the subcloud

layer, which is critical for parameterizations because

cloud-topped updrafts emanate from this layer. Also,

many coherent motions can contribute to the vertical

flux but do not rise sufficiently high to form cloud.

Moreover, in instances of stratiform cloud (e.g., strato-

cumulus) or detrained saturated air (e.g., anvils) the

cloudy part of the atmosphere does not faithfully rep-

resent the coherent motions.

Several coherent motion and updraft sampling

methods based on vertical velocity and thermodynamic

variables have been used and evaluated in dry convec-

tive boundary layers, for example, Williams and Hacker

(1992), Berg and Stull (2004) and Siebesma et al. (2007),

see also discussion and further references in Couvreux

et al. (2010). To overcome the limitations of coherent

motion identification based on the vertical velocity and/

or thermodynamic variables, Couvreux et al. (2010)

introduced a sampling method based on a decaying

scalar (tracer) emanating from the surface. The decay

rate, which depends on the concentration and a fixed

time scale (i.e., f/t) ensures that the scalar will not ac-

cumulate outside the updrafts. In other words, high

concentrations are expected to correspond to active

updrafts that are continuously replenished from the

surface.

Figure 1b shows a snapshot of such a decaying tracer

in a dry convective boundary layer. For this case, the

decaying scalar and potential temperature are well

correlated and the scalar marks the updraft structure.

For comparison, Fig. 1c shows conditional sampling

based on the 95th percentile of the vertical velocity.

Some of the limitations of identifying updrafts based on

vertical velocity are discernible. For instance, regions

with low values of potential temperature, which are not

expected to be part of the updraft, are selected; and a

large number of small disconnected regions are present.

The use of a tracer to conditionally sample the flow

(Couvreux et al. 2010) has many advantages and is

consistent with the cloud-based sampling of Siebesma

andCuijpers (1995). However, suchmethods require the

integration of additional scalar variables in numerical

models, therefore are not applicable to preexisting

model output or observational data. Furthermore, the

conditional sampling depends on several parameters

and the results are sensitive to the parameter thresholds.

Further details are discussed in section 4 and the

appendix.

A method based on the joint probability density

functions (JPDs) of vertical velocity with temperature

and humidity, is developed to address the limitations of

conditional sampling based on flow variables and/or

additional scalar tracers. The JPD encapsulates the full

statistical description of the fields (i.e., all statistical

moments can be computed from the JPD). Accordingly,

probability density functions (PDFs) are often used for

analysis and modeling of convection (e.g., Wyngaard

and Moeng 1992; Wang and Stevens 2000; Golaz et al.

2002; Larson and Golaz 2005; Bogenschutz and Krueger

2013). Previous studies have used joint Gaussians to

approximate vertical velocity–scalar JPDs (Wyngaard

and Moeng 1992) or temperature–humidity JPDs

(Sommeria and Deardorff 1977; Berg and Stull 2004).

The character of the nonlocal mixing encapsulated in

the flux decomposition in (3) manifests in the JPD as

long ‘‘tails’’ corresponding to high absolute values of

vertical velocities and dissimilar thermodynamic vari-

able values (e.g., Wang and Stevens 2000; Neggers et al.

2002). Accordingly, in convective flows JPDs deviate

from Gaussian distributions (Schumacher 2009). Even

though the long non-Gaussian tails correspond to a

small volume fraction of the flow andmay not contribute

significantly to mean quantities, they can have large

contributions to the covariances (Siebesma and Cuijpers

1995; Wang and Stevens 2000). The present method

takes advantage of this dual nature of the JPD. That is,

the JPD is divided into two parts: a joint-Gaussian that

approximates the bulk of the JPD near its peak and the

remainder that represents the coherent motions. The

coherent motion part can be further partitioned into

updraft and downdraft contributions based on the sign

of the vertical velocity.

Presently, only vertical fluxes are considered because

the focus is on turbulence parameterization [e.g., (3)].
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However, the method is generic and the methodology

can be applied to other turbulence quantities, such as

variances. Similar to the analysis of Berg and Stull

(2004), the JPD-based method can be applied to JPDs

derived from observations.

The details of the JPD-based method are described in

section 2. The large-eddy simulation (LES) data and

sampling are described in section 3. In section 4 the

method is applied to three convective boundary layer

cases: dry convection, trade wind shallow cumulus, and

stratocumulus. The shallow cumulus case is used to ex-

plore the characteristics of the JPD-based method and

results are compared with traditional cloud and cloud

core sampling in the cloud layer, and with the decaying

tracer method of Couvreux et al. (2010). Sensitivity tests

are also carried out for the shallow cumulus cases. For

the dry convective case, results are compared with the

decaying tracer sampling method. Summary and con-

clusions are presented in section 5.

2. Methodology

The methodology combines elements from similar

previous studies (Wyngaard and Moeng 1992; Siebesma

and Cuijpers 1995; Wang and Stevens 2000; Siebesma

et al. 2007; Couvreux et al. 2010). The scalar quantity of

interest is denoted by f and in the present discussion

corresponds to total (vapor plus cloud liquid) water

mixing ratio or liquid water potential temperature,

f5 fqt, ulg.
a. Definitions

The methodology and analysis of the results is in

terms of discrete variables because model data and

derived quantities are discrete. Model data are on Car-

tesian grids that are equispaced in the horizontal di-

rections. The horizontal mean of a variable at model

level l is

f(l)[
1

N
m

�
Nm

m51

f(l,m), (4)

where Nm is the horizontal sample size. For statistically

stationary flows the sample size consists of horizontal

planes at various time instances of an ensemble of sim-

ulations. The covariance, which approximates the tur-

bulent flux in (1), is

w0f0(l)[
1

N
m

�
Nm

m51

w0(l,m)f0(l,m), (5)

where the primes denote fluctuations with respect to the

mean in (4), as defined in (2). Presently, all covariances

are estimated based on the resolved-scale fields and

the subgrid-scale contribution is neglected. For well-

resolved simulations, away from the surface, the

subgrid-scale covariance part is small (,5%) (e.g.,

Matheou and Chung 2014).

The statistics of w and f can be described by the

normalized two-dimensional histogram at each vertical

level; that is, fwf(l, i, j) is the relative frequency of

occurrence of values in [w(i)2Dw/2, w(i)1Dw/2]3
[f( j)2Df/2, f( j)1Df/2] at vertical level l, where the

variable increments Dw and Df are presently taken as

constant. Indexes (i, j) correspond to the discrete par-

titioning of the (w, f) space. The explicit dependence on

level l in the argument of the variables is dropped in the

following. The term fwf(i, j) is normalized such that the

FIG. 1. (a) Potential temperature (K), (b) decaying scalar, and (c) potential temperature

(K) contours conditional on the 95th percentile of the vertical velocity for the dry convective

boundary layer. In (c) the color scale is reversed (warmer air corresponds to darker shades) to

increase the contrast.
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probability of occurrence of any combination of w and

f is unity:

�
Ni

i51
�
Nj

j51

f
wf
(i, j)DwDf5 1. (6)

Essentially, fwf(i, j) is the JPD of w–f. From the defi-

nition of f it follows that

w0f0 5 �
Ni

i51
�
Nj

j51

w0f0f
wf
(i, j)DwDf, (7)

similar to the continuous-variable definition of the co-

variance; Ni and Nj are the number of w and f bins,

respectively, of the discrete JPD.

The JPD is not known a priory and it is typically es-

timated from observations or model data. Presently, fwf
is estimated from the frequency distribution of the w–f

pairs (i.e., the two-dimensional histogram) using LES

model data.

A joint-Gaussian function, g0wf, is introduced that

partially approximates fwf (Wyngaard and Moeng 1992;

Wang and Stevens 2000; Golaz et al. 2002; Larson and

Golaz 2005; Bogenschutz and Krueger 2013):

g0wf(i, j; g0,w0
,f

0
,s

w
,s

f
, r)5 g

0
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"
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1

22 2r2

 
w00 2

s2
w

2 2r
w00f00

s
w
s
f

1
f00 2

s2
f

!#
, (8)

where the double prime denotes fluctuations with re-

spect to the discrete mean of g0, that is, w(i, j)5w0 1
w00(i, j). The joint-Gaussian approximant has six free

parameters: g0, w0, f0, sw, sf, and r, which are the

amplitude, the pairs of means and variances, and the

correlation, respectively.

The present JPD approximant g0 has two important

differences from the joint-Gaussian fit used in Wyngaard

and Moeng (1992); g0 approximates f only partially,

whereas in Wyngaard and Moeng (1992) the joint-

Gaussian approximates the entire JPD, which con-

strains the means of the variables (i.e., the location of the

peak). The means w0 and f0 are free parameters in (8)

and in general not equal tow and q. Moreover, (8) is not a

JPD, since it is not normalized [i.e., the condition in (6)

is not satisfied].

The approximation g0 is used to partition f into the

local, gwf, and nonlocal, hwf, mixing contributions,

f
wf

5 g
wf

1 h
wf
, (9)

where

g
wf
(i, j)5

(
g0wf(i, j), if g0wf(i, j)# f

wf
(i, j)

f
wf
(i, j) otherwise.

(10)

Equation (10) ensures that hwf is nonnegative, because,

when normalized, hwf must correspond to a JPD. Equa-

tion (9) describes the essence of the JPD-based method,

where the total JPD, f, is split into two parts, g and h.

b. Local mixing joint probability density function

The main novel element of the JPD-based method

is to perform the decomposition of the vertical

turbulent flux in (3) in ‘‘JPD space’’ [i.e., (9) and

(10)], rather than in physical space as in, for instance,

Siebesma and Cuijpers (1995), Siebesma et al. (2007),

and Couvreux et al. (2010). The full w–f JPD is

partitioned into two components corresponding to

local turbulent mixing gwf and coherent motions hwf.

In the cumulus cloud layer the ‘‘local’’ mixing is often

referred to as the ‘‘environment’’ contribution, that

is, the clear air turbulent motions (Siebesma and

Cuijpers 1995). In the subcloud layer and in dry

convection, local mixing corresponds to turbulent

motions that are not actively contributing to the up-

drafts or downdrafts (Couvreux et al. 2010). Con-

versely, the coherent motions are due to nonlocal

updrafts and downdrafts.

The joint-Gaussian approximation g0wf of the local

mixing should only partially approximate the full

JPD fwf in a small region Sp near its peak. To determine

g0wf, first the region Sp in the w–f-variable space is

chosen and then a best fit in the form of g0wf to fwf in

region Sp is sought. The iso-probability contour of

value p is the boundary of the region Sp. The iso-

probability contours are centered at the maximum of

fwf. Figures 2 and 3 show iso-probability contours

centered at the JPD peak for w–qt and w–ul JPDs

from the shallow cumulus case. For example S0:2 corre-

sponds to all (i, j) 2 ( p, 0:2). This procedure re-

quires that all JPDs have a single maximum, which

is typically the case for the JPDs of boundary layer

convection.

The error, or distance, between g0wf and fwf in Sp

as a function of the parameters of g0 is defined as

follows:
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FIG. 2. Joint probability density functions (JPD) of vertical velocityw and total water mixing

ratio qt for the BOMEX shallow cumulus case at different heights. (left) Iso-probability con-

tours at 0.1 intervals. (right) Logarithmically spaced contours of the full JPD (red) and

the joint-Gaussian-based approximation (black). (a)–(d) The JPDs in the subcloud layer and

(e)–(h) the JPDs in the cloud layer (z5 510–1600m).
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FIG. 3. Joint probability density functions (JPD) of vertical velocity w and liquid water

potential temperature ul for the BOMEX shallow cumulus case at different heights. (left) Iso-

probability contours at 0.1 intervals. (right) Logarithmically spaced contours of the full JPD

(red) and the joint-Gaussian-based approximation (black). (a)–(d) The JPDs in the subcloud

layer and (e)–(h) the JPDs in the cloud layer (z5 510–1600m).
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0
,s

w
,s

f
, r)2f

wf
(i, j)]2. (11)

A minimization problem is solved to determine the pa-

rameter values g0, w0, f0, sw, sf, and r that minimize E.

That is, all six parameters are determined simulta-

neously by finding the combination of their values that

leads to the minimum of E. Even though the number of

parameters is somewhat large, good initial estimates can

be computed based on the statistics of fwf.

The error E, and consequently g0wf, implicitly depend

on f and Sp (or equivalently p). The dependence on the

scalar f is expected, and it is related to the flow dy-

namics. In contrast, g0wf should weakly depend on p. For

large p (e.g., p. 0:4), g0wf will tend to approximate the

entire fwf and thus not represent the local mixing com-

ponent. For small values of p (e.g., p, 0:05), the pro-

cedure may not yield reliable results because the

approximation becomes very local and the finescale

variations of JPD can overly influence g0wf. Here p is the

only free parameter of the method and it is shown that

results are not sensitive to p when 0:1, p, 0:4. To im-

prove the quality of the fit, all JPDs are smoothed using

the procedure described in section 2d.

c. Vertical flux decomposition

The preceding sections 2a and 2b describe the de-

composition of turbulence in probability space based

on the JPD of a scalar and vertical velocity. In this

section the statistical quantities are linked to physical-

space quantities, such as area fractions, means, and

covariances.

In general, each horizontal plane can be split into Ns

disjoined sets whose union is the entire plane. Thus,

their area fraction as sum is

�
Ns

s51

a
s
5 1. (12)

Similarly, if fs denotes the mean of f in each subset,

the total mean is

f5 �
Ns

s51

a
s
f
s
. (13)

The linearity of the averaging operation leads to a sim-

ple relation between the total and the sum of subset

means weighted by their area fractions. In contrast, the

covariance includes products of variables, and therefore

its decomposition includes both the sum of weighted

subset covariances and cross terms of the subset means

(e.g., Siebesma and Cuijpers 1995; Wang and Stevens

2000):

w0f0 5 �
Ns

s51

a
s
(w

s
2w)(f

s
2f)1 �

Ns

s51

a
s
w0f0s, (14)

where w0f0s is the covariance within each subset. The

notation fs [fs is used for simplicity.

The terms included in the first term of the rhs of (14)

are referred to as the ‘‘top hat’’ part of the turbulent

fluxes (e.g., Willis and Deardorff 1974; Young 1988;

Wang and Stevens 2000) because only average quanti-

ties are included (and not the within-subset correla-

tions). The fraction of the top-hat contribution to the

total covariance is denoted by

b
fs
5a

s
(w

s
2w)(f

s
2f)/w0f0 . (15)

Similarly, the flux fraction due to the within-subset co-

variance is

g
fs
5a

s
w0f0s/w0f0 . (16)

Because in the context of turbulent flux parameteriza-

tion we are interested in the relative contributions of the

different terms of (14) to the total flux (e.g., Siebesma

and Cuijpers 1995), results are shown in terms of the

nondimensional quantities a, b, and g. We refer to b and

g as fractions because of their definitions in (15) and

(16); however, their values can be negative and/or

greater than unity. Unlike, the partition of the total JPD

in (9) into nonnegative functions, the component co-

variances of (14) can be of any sign. The only constraint

on their values is due to (14):

�
Ns

s51

b
fs
1 �

Ns

s51

g
fs
5 1. (17)

The partial JPDs gwf and hwf are used to estimate the

terms in (15) and (16). On a horizontal plane the area

fraction of the local mixing turbulent motions is

a
l
5 �

Ni

i51
�
Nj

j51

g
wf
DwDf# 1. (18)

The coherent motion part of the JPD, hwf, can be

divided into updraft and downdraft parts based on the

sign of vertical velocity:
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h1
wf 5 h

wf
jw$ 0, (19)

h2
wf 5 h

wf
jw, 0: (20)

Accordingly, the updraft area fraction is

a
u
5 �

Ni

i51
�
Nj

j51

h1
wfDwDf . (21)

Overall, al 1au 1ad 5 1, where the subscripts l, u, and

d are used to denote local mixing, updraft, and down-

draft, respectively. Note that gwf, h
1
wf, and h

2
wf as defined

in (10) and (19)–(20) are not proper JPDs because they

do not integrate to unity. The updraft mean vertical

velocity is

w
u
5

1

a
u

�
Ni

i51
�
Nj

j51

w(i, j)h1
wfDwDf, (22)

and the updraft covariance is

w0f0u 5 1

a
u

�
Ni

i51
�
Nj

j51

w(i, j)f(i, j)h1
wfDwDf2w

u
f
u
. (23)

Two decompositions are used for the vertical flux:

1) a local–coherent motion partition, Ns 5 2 in (14), and

2) a local–updraft–downdraft, Ns 5 3. In the latter, the

updraft–downdraft part corresponds to the coherent

motion part of the former. In other words, the local

component is the same in the two decompositions.

d. Smoothing filter

To improve the vertical coherence of the terms in the

turbulent flux decomposition, the JPDs are smoothed by

applying a discrete Gaussian filter G, with width n3 n,

where n is an odd integer. Values of n, 10 are presently

considered. The smoothed JPD is then,

f
wf
(i, j)5 �

(n21)/2

p52(n21)/2
�

(n21)/2

q52(n21)/2

G( p, q)f*wf(i1 p, j1 q),

(24)

where f*
wf

represents the JPD as estimated from the LES

data. Here G is normalized such that the sum over all

elements is unity. A sensitivity test to the JPD-based flux

decomposition using smoothness JPD is performed in

section 4a(4).

3. Large-eddy simulation

A series of large-eddy simulations is used to estimate

the JPDs of vertical velocityw and liquid water potential

temperature ul, or total water mixing ratio qt. For the

application of the JPD-based method, how the JPDs are

obtained is immaterial and observations can also be used

to construct the JPDs. Using LES data is advantageous

because the large data size yields smooth JPDs.

The LES model of Matheou and Chung (2014) is used

to simulate three shallow convection cases: shallow cu-

mulus, dry convection, and stratocumulus. In the cu-

mulus and dry convection cases, two decaying scalar

tracers,fa, a5 f1, 2g, are included in the LES following
Couvreux et al. (2010). The scalars differ in their decay

time scale: t1 5 15 and t2 5 60min.

The computational domain is doubly periodic in the

horizontal directions. All grids are uniform and iso-

tropic (i.e., Dx5Dy5Dz). The simulations have vari-

able domain sizes and resolutions that adjust to the

differences in boundary layer depth. A Rayleigh

damping layer is used near the top of the computational

domain to limit gravity wave reflection. Table 1 sum-

marizes the LES runs.

For the dry convection and shallow cumulus cases an

ensemble of LES runs is carried out. A different random

initial perturbation of liquid water potential tempera-

ture and total water mixing ratio in the lowermost five

vertical levels of the computational domain was used.

The ensemble member number is denoted by Nruns in

Table 1. To form all flow statistics,Nin instances in a time

interval tave 5 tbegin 2 tend when the flow is approximately

statistically stationary are used; t5 0 corresponds to the

beginning of the LES run. That is, the size of the sample

at each vertical level is Nm 5Nruns 3Nin 3Nx 3Ny.

Because of the spatial correlation of the flow fields the

number of independent samples is fewer than Nm. The

sampling parameters for each case are documented in

Table 1.

4. Results

a. Shallow cumulus

The characteristics of the JPD-based method are

mainly explored for a trade wind cumulus-topped

boundary layer that was observed during the Barbados

Oceanographic and Meteorological Experiment (BOMEX)

campaign (Holland and Rasmusson 1973). The LES

setup follows the model intercomparison study of

Siebesma et al. (2003).

1) JPD-BASED DECOMPOSITION

Figure 2 shows the w–qt JPD and Fig. 3 shows the

w–ul JPD. JPDs at four heights are shown corresponding

to half-height of the subcloud layer, cloud base,maximum

of cloud fraction, and middle of the cloud layer. The left

column panels of Figs. 2 and 3 show iso-probability
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contours centered on the JPD maximum. The right col-

umn panels show logarithmically spaced contours of the

full JPD in red color and the joint-Gaussian-based ap-

proximation in black. Only 0.3 of the probability fraction

[i.e., p5 0:3 (section 2b)] was used in fitting the joint-

Gaussian g0 JPD. Sensitivity of the results with respect to

p and the JPD smoothness is discussed in section 4a(4).

The joint Gaussian well approximates the peak of the

JPD in the cloud layer, where also g0 , f . In the subcloud

layer, constraint (10) is applied because the JPDs are

‘‘steeper’’ than the joint Gaussian in some regions re-

sulting in overlap of the g and f contours in Figs. 3b and

3d. The g contours appear as nearly straight lines where g0

is not constrained. This does not necessarily invalidate the

assumption of the local mixing component represented

by a joint-Gaussian JPD. It can be interpreted as a

modification of the local mixing by the large-scale (co-

herent) convective motions.

Figure 4 shows the vertical flux decomposition for qt

(top row) and ul (bottom row). Two decompositions

are used: coherent–local and updraft–downdraft–local

partitions. The fractional contributions are denoted

by bf for the top-hat part and gf for the within-subset

covariance. For the coherent–local w0q0
t partition

TABLE 1. Summary of the cases simulated. The details of the case setup are described in the references (second column). HereLx andLz

are the horizontal and vertical domain lengths and Nx is the number of horizontal grid points. The zonal and meridional domain lengths

and number of grid points are equal, andDx is the grid spacing. For all runs the grid spacing is uniform in all directions (i.e.,Dx5Dy5Dz).
The term Nz is the number of vertical model levels, Nruns is the size of the simulation ensemble, tave is the time interval used for data

sampling to construct the JPDs, Nin is the number of instances used in tave, and Nm is the number of the data sample used to estimate

the JPD.

Case Reference Lx (km) Lz (km) Dx (m) Nx Nz Nruns tave (h) Nin Nm 3 106

Dry convection Siebesma et al. (2007), case 3 10.24 2 10 1024 200 4 6 1 4.2

Shallow cumulus Siebesma et al. (2003) 20.48 3 20 1024 150 8 4–6 5 42

Stratocumulus Stevens et al. (2005) 5.12 1.5 1.25 4096 1200 1 1.5–2 16 268

FIG. 4. (top) Vertical flux decomposition for total water mixing ratio and (bottom) liquid water potential temperature for the BOMEX

shallow cumulus case using the JPD-based method. (a),(d) The area fraction a; (b),(e) the top-hat fraction of the flux b; and (c),(f) the

within-subset covariance fraction g. Two decompositions are used: a local mixing–coherent structures partition and local mixing–updraft–

downdraft. The shaded area corresponds to the cloud layer.
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bqc 1bql 1 gqc 1 gql 5 1, and for the updraft–downdraft–

local partition bqu 1bqd 1bql 1 gqu 1 gqd 1gql 5 1. Here

bu and gu are discontinuouswhenw0u0l is zero at z’ 200m.

The shaded area corresponds to the cloud layer that for

BOMEX is located between 0:51 and 1:60 km. Note that

although the liquid water mixing ratio ql is nonzero above

1:60 km because of cloud penetration into the inversion

layer, the turbulent fluxes are zero.

The area fractions of the updraft and downdraft (and

their sum: the coherent part of the flow) exhibit small

dependence on the thermodynamic variable. The dif-

ferences are larger in the subcloud layer and quantita-

tively reflect the differences in the JPDs. For instance,

aud (the downdraft area fraction based on ul) in the

subcloud layer is negligible, whereas aqd ’ 0:05, which

correspond to the presence (in the w–qt JPD) and ab-

sence (w–ul JPD) of tails with negative vertical velocities

(Couvreux et al. 2007). For the qt statistics at the cloud

base (z5 450m in Fig. 2), as the major axis of the

double-Gaussian transitions toward the vertical di-

rection in the w–qt coordinates of the figure, the nega-

tive w part of the JPD tail diminishes and the downdraft

area fraction is zero (Fig. 4a). The updrafts account for

nearly the entire area fraction of the coherentmotions in

the subcloud layer, whereas in the cloud layer updrafts

and downdrafts contribute equally to the coherent mo-

tion area fraction.

In the coherent–local decomposition the top-hat

fractions, bqc and buc (orange solid lines), are signifi-

cant only in a layer centered at the cloud base with

thickness ;300m and near the surface. In the cloud

layer, at z. 700m (higher than the maximum cloud

fraction), the within-region covariance is the dominant

contribution to the total flux, with gqc and guc . 0:8. In

the subcloud layer, the local and coherent within-region

covariances contribute approximately equally to the

total flux. Perhaps as expected for the BOMEX case, gql

and gul (black lines) are negligible in the cloud layer

since no vertical transport occurs in the clear air.

The flux contribution characteristics change when the

updraft–downdraft–local decomposition is considered.

The classical (Siebesma and Cuijpers 1995) character of

convection emerges with the updraft terms being the

primary contributors to the vertical flux in the cloud

layer. The fractional flux contributions are similar for qt

and ul. The largest difference between the two variables

is the magnitude of the top-hat fraction for updraft and

downdraft in the cloud layer where buu and bud are

somewhat smaller in absolute value than the corre-

sponding bqu and bqd. The terms bqd and bud are signif-

icant in the cloud layer and, as expected, have the

opposite sign of the total flux. In the subcloud layer,

the flux decomposition is similar to the coherent–local

partition (i.e., bd ’ 0 and gd ’ 0, and bu and gl con-

tribute approximately equally to the total flux).

The vertical fluxes decomposition is similar for qt and

ul, with the largest differences in the subcloud layer.

Marked variations with respect to height in the contri-

butions to the total flux are observed near cloud base.

Unlike other conditional sampling methods, the JPD-

based method is applied independently for each ther-

modynamic variable. Thus, in general the area coverage

of the flow regions can differ based on the JPD variable.

Area fractions and vertical flux components exhibit

finescale wiggles, which are often observed in similar flow

statistics (e.g., Romps 2010), because minimization in

(11) is performed independently at each level. In other

words, g0 is not directly linked to a vertical transport

equation, as in the case of the decaying scalar sampling

that results in profiles with strong vertical coherence. The

wiggles are not a result of poor sampling as discussed in

the method sensitivity section [section 4 a(4)].

2) DECAYING SCALAR DECOMPOSITION

The results of the JPD-based method are compared

with two commonly used conditional sampling tech-

niques: the method of Couvreux et al. (2010) and the

classical cloud and cloud core (Siebesma and Cuijpers

1995) decomposition (discussed in the next section). The

conditional sampling based on a decaying scalar is

somewhat ambiguous with respect to the variance

threshold and the scalar decay time scale t. The values of

m5 2:5 for the variance threshold factor and t5 15min

for the scalar decay time scale are used for the BOMEX

case. The rationale for these choices and further details

are discussed in the appendix.

Figure 5 shows the vertical flux decomposition of

f5 fqt, ulg for the BOMEX shallow cumulus case using

the conditional sampling method (top and bottom rows,

respectively). The partition is designated as updraft–

local, even though the term local is somewhat mis-

leading because it includes the contributions from

downdrafts. It is used to denote the complement of the

updraft subset, rather than strictly local mixing. Because

an additional variable is used to sample the flow, the area

fraction of the updraft structures is independent of the

thermodynamic variable, thus only one area fraction

panel is shown (Fig. 5a).

The updraft top-hat flux fractions, bqu and buu, are

qualitatively similar to those of the JPD-based method;

bqu is in better agreement with the corresponding frac-

tion estimated using the JPD-based method than buu.

The better agreement of bqu may be because cloud liq-

uid, which is strongly related to qt, is used for the updraft

selection in the conditional sampling method. The con-

ditional sampling method results in vertically coherent
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(smooth) curves because it is based on the decaying

scalar variance, which smoothly varies in the vertical.

In the cloud layer, bu accounts for nearly the entire

flux. This is because of a perhaps fortuitous cancelation

of gu and gl in the BOMEX case (Figs. 5c and 5e). It is

not clear if this cancelation is a universal character of

cumulus convection or specific to the present case.

3) CLOUD DECOMPOSITION

Figure 6 shows the vertical flux decomposition based on

the cloud and cloud core sampling. Cloudy grid cells are

those with liquid water mixing ratio ql . 13 1025 kg kg21.

Cloud core is defined as cloudy grid cells with positive

vertical velocity andbuoyancy; that is,ql . 13 1025 kg kg21,

w. 0, and uy . huyi, where the angle brackets denote the

instantaneous horizontal average. As in the conditional

sampling decomposition, the complement of the cloud/

cloud core is designated as the local component of mixing

that also includes the downdrafts contribution. The cloud

and cloud core decompositions are common but are re-

produced here using the same dataset (Table 1) as the other

runs for completeness.

The cloud and cloud core decomposition results are

similar to those of the JPD-based method and the

conditional sampling using a decaying scalar. The most

important difference is that the updraft top-hat term in

the cloud and cloud core decompositions does not vary

considerably with respect to height whereas both JPD-

based and the conditional sampling methods show small

variation in the cloud layer and larger variations near

cloud base.

The present results corroborate previous arguments

(e.g., Couvreux et al. 2010) that considering only the

cloud–clear decomposition in the cloud layer of cumulus

convection obscures the full character of flow. The JPD-

based and the conditional sampling methods show

strong differences between the subcloud and cloud

layers. Moreover, the present results show that the

complement of the cloudy updrafts is not the large-scale

environment, as put forth in Siebesma and Cuijpers

(1995), and that the negative top-hat contribution of the

downdraft can cancel the within-updraft covariance.

4) SENSITIVITY TO PROBABILITY FRACTION AND

JPD SMOOTHNESS

The sensitivity of the JPD-based flux decomposition is

explored with respect to the probability fraction, p,

which is the main parameter of the method, the sample

FIG. 5. (top) Vertical flux decomposition for total water mixing ratio and (bottom) liquid water potential temperature for the BOMEX

shallow cumulus case using the conditional sampling method of Couvreux et al. (2010). (b),(d) The top-hat fraction of the flux b; and

(c),(e) the within-subset covariance fraction g. The area fraction of the coherent structures is independent of the thermodynamic variable

and is only shown in (a). The shaded area corresponds to the cloud layer.
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size, and the smoothness of the JPD. For sufficiently

converged JPDs with respect to the sample size (i.e., the

‘‘shape’’ of the JPD does not change when the sample

size is increased), the JPD smoothness and sample size

are related parameters, since larger samples should yield

smoother JPDs. The BOMEX shallow cumulus case is

used for all the sensitivity tests. The updraft properties

are compared in all sensitivity tests because these are the

most important quantities for convection parameteri-

zations. The other statistics exhibit similar behavior.

Figure 7 shows sensitivity of the updraft area fraction

au, top-hat fraction bu, and within-region covariance

fraction gu, with respect to p. Five values of p in [0:1, 0:5]

are used. The results for the decompositions of w0q0
t and

w0u0l are similar. The vertical coherence/smoothness of

the area and flux fractions is reduced for small proba-

bility fractions p, 0:3, because the fit is performed

over a small subset of the JPD and it is more susceptible

to the small variations in the shape of the JPD between

different vertical levels. The largest differences with

respect to p are in the area fractions in the subcloud

layer. This is likely because in this region the JPD shape

near the peak somewhat deviates from a joint Gaussian

(Figs. 2 and 3). In spite of the small dependence of a in

the subcloud layer, the flux fractions, which are the most

important for convection parameterizations, are not

sensitive to p.

The overall insensitivity of the results with respect to p

is a confirmation that the shape of the JPDs near the

peak is nearly joint Gaussian. The value of p5 0:3 is

used, which is a compromise between smooth area

and flux fractions and the requirement that the joint

Gaussian only approximates the peak of the JPD.

The sensitivity with respect to the sample size is shown

in Fig. 8. Decompositions are computed using a single

LES run and ensembles with two, four, and eight

members. From each run, five model outputs are used.

The outputs are separated by equal time intervals in

4–6 h, when the flow is in quasi-stationary state. The

results do not depend on the ensemble size and a single

LES run is sufficient to capture the JPDs, especially for

the flux fractions of qt.

The effect of the smoothing filter width is shown in

Fig. 9 for n5 1, 3, 5, 7, and 9, where n5 1 denotes no

smoothing filter. A single run is used to construct the

JPDs. Applying a smoothing filter improves the vertical

FIG. 6. (top) Vertical flux decomposition for total water mixing ratio and (bottom) liquid water potential temperature for the BOMEX

shallow cumulus case based on the cloud–clear partition. (b),(d) The top-hat fraction of the flux b; and (c),(e) the within-subset covariance

fraction g. The area fraction of the coherent structures is shown in (a). The black lines correspond to the complement of the cloud and

cloud core decompositions. The shaded area corresponds to the cloud layer.
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coherence of the decomposition statistics. The flux de-

composition results show no dependence on the width of

the filter. The area fractions show only minor de-

pendence for n$ 3. This implies that the overall shape of

the JPD is accurately captured using a single LES run

and that smoothing can be used to reduce some JPD

convergence errors.

Overall, the decomposition is not sensitive to sample

size and smoothness of the JPD. However, the vertical

coherence can be improved when a smoother JPD is

used. Moreover, the application of a smoothing filter

does not alter the results and only improves the vertical

coherence.

b. Dry convection

The flux decomposition is computed for the dry con-

vective case 03 of Siebesma et al. (2007). The JPD-based

method and the conditional sampling using a decaying

scalar are used. Figure 1 shows a vertical plane of the

potential temperature field (top panel) and a decaying

scalar (middle panel). Unlike the BOMEX case, in

which the forcing is well balanced and a quasi-stationary

state is attained following the initial transient, the

boundary layer in the dry convective case constantly

evolves. To avoid the influence of the evolving mean on

the JPDs, only one time instance is used at t5 6 h, when

the depth of the boundary layer is about 1 km. Four

statistically identical LES runs are used to construct the

JPDs of w–u (water vapor is not included in the dry

convection simulations). Further details about the evo-

lution of the boundary layer, the mean fields, and up-

draft sampling based on the vertical velocity are

discussed in Siebesma et al. (2007).

Figure 10 shows JPDs of vertical velocity w and po-

tential temperature u at four heights. Similar to the JPDs

in the subcloud layer of the BOMEX case (Fig. 3), the

peak of the JPD is offset with respect to the mean, es-

pecially for w. This results in substantial contributions

from the top-hat part of the fluxes corresponding to the

local component bul. As shown in Fig. 11, bul ’ 0:25 up

to the height where w0u0 switches sign.
The updraft area fraction is about 0.4 up to half the

boundary layer height and decreases higher up to about

0.25. The downdraft area fraction is maximum near the

boundary layer top corresponding to the entrainment

process and also relatively large (fraction of about 0.1)

FIG. 7. Sensitivity of the JPD-based method to the probability fraction used for fitting the joint-Gaussian JPD. The panels show the

BOMEX shallow cumulus case updraft quantities: (a),(d) area fraction; (b),(e) top-hat contribution; and (c),(f) within-updraft covariance.

(top) The JPD-based method applied to total water mixing ratio and (bottom) liquid water potential temperature. The shaded area

corresponds to the cloud layer and the legend to the probability fraction.
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near the surface with a minimum value at about

z5 700m. The reduction of the downdraft area fraction

corresponds to the change of the location of the tail of

the JPD. As shown in Fig. 10, at z5 250m the tail in-

cludes negative w values, but the fraction of w, 0 in the

JPD tail is negligible at z5 500 and 750m. Near the

boundary layer top, z5 900m, the JPD has two tails

extending to positive and negative w.

In the coherent–local decomposition, buc is the largest

contribution except for z, 250mwhere guc is the largest

one; gul is negligible throughout the boundary layer. In

the lower quarter of the boundary layer buc ’bul.

In the updraft–downdraft–local decomposition, the

largest contribution to the flux is from buu accounting for

about half ofw0u0. The remaining half of the flux is about

equally split between bul and guu. This balance is altered

at the top of the boundary layer (w0u0 , 0), where the

downdraft top-hat term bud becomes important and bul

is small.

Figure 12 shows decomposition using the conditional

sampling method based on a decaying scalar. Without

the presence of cloud to guide the choice of the method

parameters the ad hoc choice of t5 15m andm5 1, for

the scalar decay time scale and variance factor threshold

was made, similar to Couvreux et al. (2010). Further

details regarding the dependence of the results on t and

m are discussed in the appendix. The decaying scalar

decomposition has the property of selecting the largest

values of u and w, thus the magnitude of the flux com-

ponents bu and gu is very large. The balance is between

the positive (i.e., same sign as w0u0) contribution of buu

and the negative gul. For the chosen t and m, the two

terms, buu and gul, are approximately equal.

c. Stratocumulus

The stratocumulus-topped boundary layer shares

many of the difficulties of dry convection with respect to

updraft/downdraft conditional sampling because of the

absence of convective cloud. The JPD-based method is

applied to an LES of the DYCOMS II RF01 case

(Stevens et al. 2005)—a nocturnal stratocumulus cloud

with 100% cloud cover. The LES has very high resolu-

tion, Dx5 1:25m, to resolve the entrainment process

below the sharp inversion. Such high vertical resolution

is not needed for the flux decomposition in the boundary

layer, thus the JPDs are constructed by sampling four

LES-model levels to create JPDs every 5m. The present

run (Matheou et al. 2017) is a higher-resolution

FIG. 8. Sensitivity of the JPD-basedmethod to the run ensemble size. TheBOMEXshallow cumulus case updraft quantities: (a),(d) area

fraction; (b),(e) top-hat contribution; and (c),(f) within-updraft covariance. (top) The JPD-based method applied to total water mixing

ratio and (bottom) liquidwater potential temperature. The shaded area corresponds to the cloud layer and the legend to the ensemble size.
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complement of the series of DYCOMS II RF01 runs in

Matheou and Chung (2014), where more details about

the boundary layer structure are documented.

Figure 13 shows w–qt JPDs and Fig. 14 the w–ul JPDs

at three vertical levels together with the joint-Gaussian

based fits. The JPDs are similar to those of the dry

convection case with two tails extending to positive and

negative w. The long positive w tails observed in the

cloud layer of the cumulus case are not present in the

stratocumulus cloud layer (z5 750m). The negative w

tail of the JPDs is more prominent compared to the dry

and cumulus convection cases because of the downdrafts

generated by cloud-top radiative cooling.

Figure 15 shows the flux decomposition for the

DYCOMS case. Unlike the cumulus convection case,

only the area fractions for the qt and ul decompositions

are similar. The flux decompositions for w0q0
t and w0u0l

show large differences in the contribution of the various

terms, especially in the cloud layer.

The coherent motions area fraction ac varies between

0.10 and 0.25 throughout the boundary layer with the

maximum area fraction near the surface and the

boundary layer top. Near the surface the updrafts ac-

count for essentially all the coherent part of the flow

whereas near the boundary layer top the downdrafts

account for most of the coherent motions. The flux de-

composition shows complex variability with respect to

height. Near the boundary layer top, bd accounts for

almost the entire vertical flux. In the subcloud layer the

dominant contributions to the flux are from bu and gl. At

cloud base, z’ 500m, the decomposition ofw0u0l exhibits
large adjustments between the different terms and

includes a region (z5 600–720m) where gul accounts for

the entire flux.

5. Conclusions

A method based on the joint probability density

function (JPD) of vertical velocity and a scalar, such as

the total water mixing ratio or potential temperature, is

developed to characterize coherent motions (i.e., up-

drafts and downdrafts) in the atmospheric boundary

layer. The JPD-based method partitions the full JPD

into a joint-Gaussian part and the complement to

FIG. 9. Sensitivity of the JPD-based method to the smoothing filter width. The BOMEX shallow cumulus case updraft quantities:

(a),(d) area fraction; (b),(e) top-hat contribution; and (c),(f) within-updraft covariance. (top) The JPD-based method applied to total water

mixing ratio and (bottom) liquid water potential temperature. The JPDs were estimated from five instants of a single LES run in t5 4–6 h.

Decompositions for four discreet Gaussian filters widths with sizes n 3 n and a case without any smoothing filter n5 1 are compared. The

shaded area corresponds to the cloud layer and the legend to the filter width.
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separate the local mixing and coherent motion contri-

butions to the JPD and, consequently, to the vertical

turbulent flux. Two flux decompositions are explored:

a local–coherent and a local–updraft–downdraft

partition, where the local mixing fraction of the flow

is the same in the two decompositions. The over-

arching goal of the method is to guide the develop-

ment and evaluation of boundary layer convection

parameterizations.

The flow decomposition is performed independently

for each scalar variable. Thus, it is specific to the cor-

responding turbulent flux (e.g., w0q0
t or w

0u0l). The joint

Gaussian is determined by finding the best fit to the full

JPD in an area near the JPD peak. This is motivated by

the observation that the JPD peak has approximately

joint-Gaussian shape. The present results support this

proposition.

The main difference of the present method with re-

spect to other conditional sampling methods is the de-

composition of the flow in probability space rather than

physical space. The JPD-based method relies on a direct

identification and partition of the physical processes by

considering the properties of the JPD, rather than a

conditional assignment of flow regions (e.g., grid cells)

to a specific category or flow subset.

The main advantages of the JPD-based method are

the following:

d The flow decomposition does not depend on water

condensate (cloud) and can be applied to cloud-free

convection, the subcloud layer of cumulus convection,

and in regions of stratiform cloud.
d The only requirement for the application of the

method is an accurate JPD. The JPD-based method

FIG. 10. Joint probability density functions (JPD) of vertical velocity w and potential temperature u for the dry

convection case at different heights. Red contours correspond to the full JPD and black contours at identical

intervals to the joint-Gaussian-based approximation. The contour spacing is logarithmic.
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does not use additional variables, such as tracers. Only

the two variables forming the covariance are used.

Accordingly, the method can be applied to both

observational and model data.
d The covariance decomposition is specific to the scalar

variable (e.g., humidity or temperature), and subtle

differences between thermodynamic variables can be

discerned.
d The JPD-based method includes only one free param-

eter and sensitivity tests show weak dependence on

the parameter values.

The main disadvantage of the JPD-based method is

the weak vertical coherence of the area and flux fraction

profiles. That is, often the profiles are not smooth and

feature ‘‘spikes.’’ This limitation can be mitigated with

additional smoothing of the JPD or the flux profiles.

The JPD-based method is applied to large-eddy sim-

ulation (LES) model output of three boundary layers:

dry (cloud free) convection, the BOMEX cumulus

convection case, and the DYCOMS II RF01 stratocu-

mulus case. The results of the JPD-based method are

compared with traditional cloud and cloud core condi-

tional samplings for the cumulus case and the decaying

scalar conditional sampling method of Couvreux et al.

(2010) for the dry and cumulus convection cases.

In conditional sampling methods based on flow vari-

ables (e.g., cloud) the subgrid-scale (SGS) contribution

to the fluxes, when available, can be readily included in

the flux decomposition by adding the SGS contribution

to the resolved-scale counterpart in each grid cell. The

inclusion of the SGS contribution to the JPD is not

straightforward because a model for the SGS JPD is

required to construct the total (resolved scale 1 SGS)

JPD, similar toMatheou et al. (2010). Typically, the SGS

contribution to the fluxes is very small (,5%) away

from the surface and the flux decomposition based only

on the resolved scale fields is representative of the flow.

Overall, the results of the JPD-based method are

similar to the cloud and decaying scalar conditional

sampling methods. However, in spite of the similarities

between the different methods, important differences

are observed in the three boundary layer types presently

FIG. 12. Vertical flux decomposition for potential temperature for the dry convection case using the conditional samplingmethod: (a) area

fraction a; (b) top-hat fraction of the flux b; and (c) within-subset covariance fraction g.

FIG. 11. Vertical flux decomposition for potential temperature for the dry convection case using the JPD-based method: (a) area

fraction a; (b) top-hat fraction of the flux b; and (c) within-subset covariance fraction g. Two decompositions are used: a local mixing–

coherent structures partition and local mixing–updraft–downdraft.
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explored. The differences show that an objective defi-

nition of the various flow regions is elusive and that flow

properties, such as updraft characteristics, depend on

the sampling method. For instance, in the BOMEX

shallow cumulus case the cloud and cloud core condi-

tional samplings show that the updraft top-hat term

accounts for the entire vertical flux in the cloud layer

with very small variation in the vertical. For the same

case, the decaying scalar sampling and the JPD-based

method show variation of the updraft top-hat term with

height with a region of adjustment from the subcloud to

the cloud layer.

Often flux decompositions in cumulus cloud layers

label the complement of the updraft region as the ‘‘en-

vironment.’’ However, the results of the JPD-based

method show that the downdraft top-hat term can be

important. For the present cumulus case there is a

(perhaps fortuitous) cancelation of the downdraft top-

hat and the within-region updraft covariance terms. The

partition of the flow into updraft and environment in the

cloud layer obscures the full character of the convection,

since downdrafts are incorrectly combined with the

environment.

The flux decomposition depends on the thermody-

namic variable and the convection type. For the shal-

low cumulus case the vertical flux of total water mixing

ratio and liquid water potential temperature show

small differences, but for the stratocumulus case the

differences are larger. The dependence of the flux de-

composition on the scalar variable can be significant for

FIG. 14. Joint probability density functions (JPD) of vertical velocity w and liquid water potential temperature ul for the DYCOMS II

RF01 stratocumulus case at three heights. Red contours correspond to the full JPD and black contours at identical intervals to the joint-

Gaussian-based approximation. The contours are logarithmically spaced.

FIG. 13. Joint probability density functions (JPD) of vertical velocity w and total water mixing ratio qt for the DYCOMS II RF01

stratocumulus case at three heights. Red contours correspond to the full JPD and black contours at identical intervals to the joint-

Gaussian-based approximation. The contours are logarithmically spaced.
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convection parameterizations, implying that the pa-

rameterization must take into account the subtleties of

different variables.
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APPENDIX

Parameter Sensitivity of Decaying Scalar
Conditional Sampling

In the conditional sampling method of Couvreux et al.

(2010), the coherent part of the flow consists of all grid

cells with positive vertical velocity and scalar concen-

trationfa .m3max(sf, smin), wheresf is the standard

deviation of the scalar and smin a minimum threshold for

the standard deviation. In the cloud layer, at z higher

than a quarter of the cloud layer depth above the cloud

base, the additional condition of positive liquid water

content is added, such that only cloudy cells are selected.

The results depend on the scaling factorm and the decay

time scale t, which can make the sampling ambiguous.

For cloudy boundary layers, the ambiguity of the

conditional sampling can be significantly reduced

when m is chosen such that results match the cloud-

based sampling. Figure A1 shows the area fraction of

the coherent structures diagnosed using the condi-

tional sampling for the shallow cumulus case. The

conditional sampling is performed using two scalars

with decay times scales of t5 15 (left) and t5 60min

FIG. 15. (top) Vertical flux decomposition for total water mixing ratio and (bottom) liquid water potential temperature for the

DYCOMS II RF01 stratocumulus case using the JPD-based method: (a),(d) the area fraction a; (b),(e) the top-hat fraction of the flux b;

and (c),(f) the within-subset covariance fraction g. Two decompositions are used: a local mixing–coherent structures partition and local

mixing–updraft–downdraft. The shaded area corresponds to the cloud layer located between 0.56 and 0.90 km.
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and varying m. The conditional sampling area fraction

curves for smallm abruptly revert to the cloud fraction

curve at z’ 0:9 km when the additional condition of

positive cloud liquid water is activated. These results

are similar to Fig. 5 of Couvreux et al. (2010). The

value of the threshold factor m that matches the cloud

sampling at z’ 0:9 km and the variation of the area

fraction in the subcloud layer depends on the decay

time scale. For the present comparisons the values

t5 15min and m5 2:5 are used because they yield

a nearly monotonically decreasing area fraction with

a smooth transition to the cloud sampling in the

cloud layer.

The selection of t and m in cloud-free convection

is more difficult because a cloud-based sampling is not

available to guide the parameter choice. Figure A2 shows

the area fraction of the coherent structures diagnosed using

the conditional sampling method for the dry convection

case. The area fraction dependence on t andm is similar to

the one observed in the subcloud layer of the cumulus

convection case (Fig. A1). Without the benefit of matching

to cloud fraction, the parameter selection in the dry con-

vective case is somewhat arbitrary. The pair t5 15min and

m5 1 is used based on a similar parameter selection in

Couvreux et al. (2010). The area fraction sensitivity di-

minishes for pairs t5 60min and m, 2, which can be

FIG. A1. Area fraction of the coherent structures diagnosed using the conditional sampling method of Couvreux

et al. (2010) for the BOMEX shallow cumulus case: (a) t5 15 and (b) t5 60min scalar decay time scales. Colored

curves correspond to varying scalar variance threshold factors. The black line is the area fraction of the active cloud,

defined as saturated grid cells with positive vertical velocity.

FIG. A2. Area fraction of the coherent structures diagnosed using the conditional sampling method of Couvreux

et al. (2010) for the dry convection case: (a) t5 15 and (b) t5 60min scalar decay time scales. Curves correspond to

varying scalar variance threshold factors.
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another criterion for choosing m and t. However,

t5 60min is larger than the time scale of convection for the

present conditions (’10min). Even though the area frac-

tion shows large sensitivity to t andm, the sensitivity of the

flux decomposition is significantly less, similar to the results

of the JPD-based method shown in Fig. 7.
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